

CERTIFICATE OF REGISTRATION

Society of Independent CMM Service Engineers MG Metrology Services, Inc.

11328 Bogie Lake Road White Lake, Michigan 48386 USA

ISO/IEC 17025:2017

This laboratory is accredited in accordance with the recognized Standard ISO/IEC 17025:2017 "General Requirement for the Competence of Testing and Calibration Laboratories."

This laboratory also meets the requirements of ANSI/NCSL Z540.3 2006 and any additional program requirements in the field of calibration. MG Metrology Services, Inc. also operates in accordance with ISO 9001:2015 under a separate certificate.

This accreditation demonstrates technical competence for a defined scope and the operation of laboratory quality management systems as defined in the attached supplement.

This approval is subject to the firm maintaining its system to the required standards, which will be monitored by AGS. In the issuance of this certificate, AGS assumes no liability to any party other than the firm named above, and then only in accordance with the agreed upon Quality System Assessment Agreement.

Certification Number: AGS-US051515-16/4

Original Approval: May 15, 2015
Date of Issue: May 15, 2024
Date of Expiration: May 14, 2027

Site #: 08

For and On Behalf of American Global Standards, LLC Stephen Keneally, President

Society of Independent CMM Service Engineers MG Metrology Services, Inc.

11328 Bogie Lake Road White Lake, Michigan 48386 USA

Calibration Scope of Accreditation ISO/IEC 17025:2017

Date of Issue: May 15, 2024 - Expiration: May 14, 2027 Certificate Number: AGS- US051515-16/4 - Site #: 08

Parameters	Range	Measurement Uncertainty	Equipment Remarks
Linear Displacement ³	0-40 meters	1.55 µm per	Renishaw ML10 Laser
		Meter	Per ASME b89.4.1-1997
			Sec 5.4.3 Laser Interferometer
Volumetric and Linear Performance ³	8 inches	+/- (19+2.1L) μin	8- Inch Glastonbury Gage
			Per ASME b89.1.9M
Lineau Daufauran a 3			24- Inch Mitutoyo Step Bar
Linear Performance ³	0-24 inches	+/- (20+2L) μin	Per ASME b89.1.9M
	0-40 inches	+/- (20+2L) μin	40- Inch Mitutoyo Step Bar
Linear Performance ³	o 40 menes	., (20:22, p	Per ASME b89.1.9M
_	12 inches	+/- (7.0+.8L) μin	12- Inch CMI Square Block
Linear Performance ³	12 menes	17- (7.01.8Ε) μπ	Per ASME b89.1.9M
		. / /= 0 . 4 . 5	Bal-Tec Ball Bar
Volumetric Performance ³	Ball Bar Lengths	+/- (5.0+4.4D) μin	L=Length of Ball-Bar
	(100 through 1000 mm)		Per ASME b89.4.1-1997-Sec 5.5.2-Using calibrated sphere
Repeatability ³	Calibrated spheres ranging from (15.875 through 50.00 mm)	+/- (8.5+1.5) μin	Per ASME b89.4.1-1997-Sec 5.3.3-Using calibrated sphere

Notes:

- 1) This laboratory offers commercial calibration service.
- 2) Best Uncertainties represent expanded uncertainties using a coverage factor of k=2 which provides a level of confidence of approximately 95%.
- 3) On-site service is available for this parameter. Disclaimer: The uncertainties achievable on a customer's site can normally be expected to be larger than the Best Measurement Capabilities (BMC) that the accredited laboratory has been assigned. Allowances must be made for aspects such as the environment at the place of calibration and for other possible adverse effects such as those caused by transportation of the calibration equipment. The usual allowance for the uncertainty introduced by the time being calibrated, (e.g. resolution) must also be considered and this, on its own, could result in the calibration uncertainty being larger than the BMC.